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ABSTRACT

‘::>A detailed analysis of the deformation and stress fields produced
in an elastic/perfectly plastic half-space by a rigid conical indenter
was performed using the elastic/plastic finite element code BOPACE-3D.
The analysis considers: the elastic deformation and stress fields
with finite element results being compared to the closed-form solutions
obtained by Sneddon, the elastic/plastic deformation and stress fields,
and the residual deformation and stress fields which have not been
analyzed to date. A special loading technique was developed to find

- the residual solutions.
The included angle of the rigid conical indenter was set to
— ,; = 136;%ko simulate a Vickers pyramidal indenter. Idealized soda-
line glass was chosen as an elastic/perfectly plastic brittle material.
Stresses obtained during the loading-unloading cycle near the
elastic/plastic boundary were transformed to the principal stresses and

the residual principal stresses to allow analysis of median, radial

and lateral crack initiation and propagation.
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CHAPTER I

INTRODUCTION

1.1 General Introduction

Elastic contact problems and elastic indentation proBlems
involving the normal application of a load against an elastic half-
space by a rigid body have been of considerable interest in various
fields of applied mechanics. The point indentation problem was
solved in closed-form by Boussinesq [1] and Michell [2]. The closed-
form solution for spherical indentation was developed by Hertz [3]
and Huber [4]. The conical indentation problem was solved in closed-
form by Sneddon [5,6].

As the theory of plasticity has advanced, elastic/plastic
contact-indentation problems have been approached analytically (7,8,91],
experimentally [10,11] and numerically ([12,13,14,15]. To the author's
knowledge, the problem of normal loading of an elastic/perfectly
plastic half-space by a rigid conical indenter has not been analyzed,
despite the fact that aspects of this problem are of great interest
in many fields, including indentation fracture mechanics. An analytical
solution to this problem would be extremely difficult to develop but
the use of the high-speed computer combined with the proper finite
element code have made its solution possible. 1In this investigation a
finite element code which incorporates the pure tangential stiffness
incremental method was applied to obtain a solution to the problem of

elastic/plastic conical indentation.
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1.2 Purpose of the Investigation

The purpose of this investigation was to perform fundamental
research on elastic/plastic conical indentation problems associated

with the machining of brittle materials. It is anticipated that the

LLT design, fabrication and maintenance capabilities for brittle structures
can be improved when the basic understanding of fundamental failure
mechanisms associated with resultant generated elastic/plastic stress

fields and residual stress fields is increased. The resultant

axisymmetric elastic/plastic stress fields associated with both
loading and unloading can then be related to median, radial and
lateral cracking. In order to obtain this solution, it was necessary
to apply axisymmetric elastic/plastic analysis and cyclic loading

in the finite element program.

1.3 Scope of the Investigation

This investigation consists of four primary sections. The first
section considers the development of a finite element model for the

conical indentation problem and the verification of the model by

P - comparing numerically generated results with the closed-form results
= for an elastic half-space derived by the well-known Sneddon solution.
P

L,' Secondly, an elastic/plastic conical indentation analysis is performed
é

L

using the finite element model with plastic analysis capability to
generate the elastic/plastic stress and strain fields and to determine

the extent of plastic deformation near the indentation site. Thirdly,

.v?«.r

a loading-unloading cycle is simulated in order to obtain the residual
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stress fields associated with elastic/plastic indentation. Finally,
the results in terms of generated stress fields are related to the
initiation and propagation of median, radial and lateral cracks
beneath the indenter.
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CHAPTER II

ELASTIC/PLASTIC FINITE ELEMENT METHOD

2.1 General Concepts

This section discusses the general concepts utilized in the
. solution of elastic/plastic problems by finite element techniques.

This approach is based on a plastic stress-strain matrix derived

n p——

LARA /"'.".‘4’
A Lttt 2 -, .
e PR . . .

from the Prandtl-Reuss equations, and on incremental or iterative

stiffness methods.

0 ‘W ‘l nl /
e
»

2.1.1 Stress-Strain Equations

CE2n e 2an s 4 o
AR A AR AN

It has been well established that the plastic constitutive

equation can be expressed in incremental form. In this investigation,
the selected incremental plasticity relations conform to the Prandtl-
Reuss flow rule, which is the usual flow rule associated with the
well-known Huber-Mises yield surface criterion [7,16,17]. The
Prandtl-Reuss flow rule uses the strain increment deij, which is

related to the stress 1ncrgment do The incremental stress-

i3

strain relations with the differential form of the Huber-Mises

yield surface criterion can be represented in matrix form as:
{do} = [DP]{de} , (1)

where {do} and {de} are defined as the ~olumn matrices of
dcij and deij, respectively; and [Dp] is the plastic stress-strain

matrix. Equation (1) can be expressed as:
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de. (i = 192,3’4’596)’ (2)

where the coefficients aci/a;j are the partial stiffness components
[28]. Hooke's law for isotropic elastic materials can be expressed in

matrix form as:

{o} = [D®I{e} , (3)
where the elastic stress-strain matrix [De] is given as:

¢ 3

1-v v Vv
-2 1-2v iy 0 0 0
v levy v
-2y 1-2v 1-2v ¢ 0 O
Y v 1-v
. T-2v 1-2v 1-2y 0 0 O
p%] = 26
[D7] L . (4)
0 o 0 3 0o o
0o 0 0 0 —;— 0
1
o o 0 o o0 3

For the elastic/plastic finite element method, the plastic stress-
strain matrix [Dp] for yielded elements takes the place of the elastic
stress-strain matrix [De].

The Prandtl-Reuss stress-strain relations for the deviatoric

strain increment deij during continued loading are:

do!

de!, = ¢g! dx + i

ij ij 26 ° )
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m where

A P =
a =320 )
g oH'
AP
9 = _3_ [ ' 2
a [ZqﬁGﬁJ , N
—p _{3,p ,p)%
de [2 deij dt-:ij] s (8)
and
prade .9
de?  (fdeP)

' ' 32-2
oij cij 39 (10)
and
' ' = _2_—" = 3—2 '
oij doij 3 odo g O H'dx . (1)
From equations (5) and (11),
260!, (e', - o'.d\) = 25 2%Han .
ij ij ij 9
Therefore,
c!.de', o!.de,
- dr = ij "ij = ij "ij , (12)
. S S
-
Tg where
- 2-2(, , B
- =30 [1 + 36] . (13)
q
g From equations (6) and (12),
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ki ""k2 R ii ki ki)
' - L. 1 = - - g
Ly dclJ 2Gid i i 3 } ZG{dEIJ 1373 i S j (14)
55 The total stress increment doij is:
2N
do.. = do', + =2 &, . de
1j iy 7 3=2v) “43%%44
o! de
- Vv o k& Tk
2G deij + = Gijdaii 055 T s (15)
Equation (15) can be represented in matrix form as:
{do} = (OP] {de} , (16)
where
(DP] = 26 »
0'2 0'2
((1-v XX 1-v _
1-2v S 1-2v ]
o' o a' o' SYM.
vV _ XX yy v 2z
1-2v S 1-2v S
v o' of o' 1! 12
z2 _ Yy 2z 1-v _ 2z
1-2v S S 1-2v S
o' o' o' 1! T 2
., - . .22 1 x
.. S Xy S yz S 2 S
' . . . 2
- o] o o T T T
!-'._' - —n- T - —ﬂ T - -——-zz T - —&L.z .l. - .-Lz
o= S yz S ‘"zx S 'yz S 2 S
L & )
y:vw‘ ¥ ] ]
e~ vy, _ 2z _lxvlax _ Tyrlax 1 Tax
- | S zZX S ZX S zx S S 2 S
: -
- (17)
| q -

B It is obvious that equation (16) is similar in form to equation (3) and

that the necessary modifcation from elastic to elastic/plastic behavior
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would be to replace {De] by [Dp] for vielded elements as successive
yielding takes place. This procedure was developed bv !larcal and

King [18] and Yamada, Yoshimara and Sakurai [19,20].

2.1.2 Incremental Stiffness Method

In this investigation, the incremental pure tangential stiffness
method was applied to construct the stiffness matrix. In this section,
this incremental stiffness method is discussed. For elastic finite
element analyses, the relationship between the nodal force and nodal

displacement in each element n can be expressed in matrix form by:

tQ} = (k%] {q}_, (18)
where
(x%) = 55 (817 (D°1(Blav , (19)
and
el = (8] {a} , (20)
{Q}n = equivalent nodal force matrix,

{q}n = equivalent nodal displacement matrix,

[B]

displacement-strain matrix.

Integration of equation (19) is over the volume of the element. The
matrix [ke] is called the stiffness matrix for the elastic elements.
Similarly, for the plastic elements the stiffness matrix is expressed

as:

(xP1 = £77 (817 [DP] (B] av , (21)
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{do}_ = [kP]{dq}n ) (22)

The overall stiffness matrix [k], which is an assemblage of the stiffness
matrices [ke] and [kp], relates the nodal load increment {dQ} to the

nodal displacement increment {dq} as:

{dqQ} = [k] {dq} . (23)

In order to solve the incremental equation (22) for an elastic-

plastic problem, the load-deflection relation is first expressed by:

Q) = [kla},

T
sy [B]7 [D] [B] 4V {q}_

fv [B]T {c}av . (24)

Using variational techniques,

f. [B]T {do} av

{dQ}n v

- 1, (BT (D] {delav

k '

L

8 = s, (817 [D.] [B] av {dq}

ke v T

Ef

t', = [kT] {dq}n ’ (25)
L.

Li where [DT] and [kT] are called the material tangential modulus matrix,
kw .

and the structural tangent stiffness matrix, respectively. It is
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computation of the plastic strain increment {de

obvious that

[D®)

[DT] )

[ ]

[k®]

for the elastic element and

p
(0?1 = 0]

[kP]

[k,]

for the plastic element.

The matrix [Dp] is updated for each increment of load with
P} at the yielded
elements. The tangent stiffness matrix [kT] is computed at the end

of each increment and used for each succeeding increment according

to the following equations:

{Qi} = {Qo} + j%l {de} ’ (26)
i
{qi} = {q} + jzl {dqj} > (27)
and
(k; ;] {dqy} = {dq;} , (28)

after the ith increment where {Qo} and {qo} are the initial loads
and displacements, usually null vectors. The above procedure is

called the "incremental tangent stiffness method."
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2.1.3 Other Stiffhess Methods

For elastic/plastic finite element analyses, there are three
major stiffness methods in addition to the incremental stiffness
method, the iterative method, the initial strain method and the initial

stress method. The iterative method [21,22] is used for elastic/plastic

. behavior when the deformation theory of plasticity is employed. Suppose
ﬁ' the nonlinear nodal force and nodal displacement relation is expressed
g
. as:
3 Q) = [k}, , (29)
e

where the force {Q}n is entirely known and the displacement {q}n is

}ﬂ . entirely unknown. Such an iterative procedure involves an initial guess
Ei for the displacement {q}éo) . An increasingly accurate series «:

: vectors

5

3

: (1) (2) (N)

;.. {a} ™% {q} ™7 . .. {a} (30)

is then generated with the objective being convergence to the exact

i_ vector {q} . The first iteration is obtained from:

L;

e (o) 1) _

& [k({a},® , (@] (a1 = Q) , (31)
b .

& which has a formal solutiom:

&

T -

& (P = O gy (32)
[ n n

; The general procedure is to solve the equation:

o . ka7, @1 @ ® = @ (33)
o

-

g

Tf'.
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In order to find the current step, the displacements from the pre-
ceding steﬁ are used. l |

The major problems arising from the use of this method are:

1) there is no guarantee of convergence,

2) a new secant stiffness must be generated at each step, and

3) a new stiffness matrix must be inverted at each s:tep.

The preceding two methods, incremental method and iterative method,
are variable stiffness methods with stiffness matrices generated for
each step. In addition to these variable stiffness methods, there are
constant stiffness methods: the initial strain method and the initial
stress method. These have been developed to reduce the computation
time by utilizing the same stiffness throughout.

In the case of the initial strain method [22), use is made in the
first iteration of the elastic stress-strain [De] given by equation (4)

to define [ke] of equation (19) and solve the equation:

%] (P = a1, (34)
, ()

where {q defines the displacement vec.or for the first iteration

and {Q} 1is the total prescribed load vector. This yields an approxi-
mate displacement vector {q}(l). A corresponding approximate strain

is found from:

ter® = 8y (. (35)

Hence the exact stress corresponding to the approximate strain is:

(o} ® = 9 {(e}(l) -{so}(l)} , (36)
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where {eo}(l) is an artificially imposed prestrain. An artificial
) ( :
equivalent nodal load corresponding to {eo}‘l) is:
L T e (1)
{Q}e,n,l = /y [B]" [D7] {e} dv . (37)
€
0
The second iteration becomes:
6E1 @@ =@ o+ (38)
€
0
in which the second displacement vector {q}(z) is sought. The
recurrent equation then becomes:
S IRCI AR N GRS (O A G (39)
€
)
For the initial stress method [22,23,24], equation (36) can
be described as:

@® <y P 40y, (40)
where {oo}(l) is an artificially introduced prestress. Corresponding
to {co} we have

a _ T (1)

{Q}e,n,ﬂ, fy [B]" {o} av . (41)

%

The second iteration involves solution {q}(z) as:
e (2) (1)
(k] {q} @ +1ag ., - (42)
o}
0
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The recurrent equation is

e,n, L

g
0

[k®] {q = {Q} + {Q} (43)

2.2 BOPACE - 3D

Selection of the proper finite element program that has plastic
analysis capability is an important aspect of solving the elastic/
plastic indentation problem. Here, a finite element code BOPACE (THE
BOEING PLASTIC ANALYSIS CAPABILITY FOR ENGINES) -3D Version 6.2, which
was developed for analysis of the Space-Shuttle Main Engine (SSME),
was chosen.

The program employs the Huber-Mises yield surface criterion, the
Prandtl-Reuss flow rule, and an isotropic-kinematic hardening theory
[7,25,26,27] as the basic concepts of the elastic/plastic theory. It
also employs three types of stiffness methods [28],

1) the pure "tangent stiffness incremental" method,

2) the "constant-stiffness, initial stress'" method, and

3) the '"combined" method
for solution of elastic/plastic problems, and a modified Gauss wave-
E front solution procedure [22] for linear equation solution.

g;é Development of the program has been strongly influenced by the
following requirements:

1) the analysis of very high temperature, large plastic-

creep effects and geometric nonlinearities,

. 2) treatment of cyclic thermal and mechanical loads,
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3) improved material constitutive theory which closely follows
actual behavior under variable temperature conditions, and
4) a stable numerical solution approach which avoids cumulative
errors.
The above characteristics make it one of the most sophisticated finite
element codes currently available for mauy types of general nonlinear

problems.

2.3 Verification of Nonlinear Finite Element Code

Before applying the solution technique adopted in this investiga-
tion to the indentation problem, the technique was first verified
by comparing generated elastic/plastic results for two variations of
a selected plane-stress problem with those independently obtained from
the literature. The plane-stress problem selected was a plate with a

circular penetration subjected to uniaxial tension.

2.3.1 Comparison to Yamada's Analysis

Here, the results obtained from the elastic/plastic finite element
code used in this investigation are compared to those obtained by
Yamada [Personal Note] for an aluminum plate with a circular penetration
subjected to uniaxial tension. The comparison is made in terms of
forces and displacements along the vertical and horizontal symmetry
axes of the plate for the same nodal coordinates. The Yamada solution
employs an incremental theory upon which many current nonlinear finite

element codes are based [NASTRAN, NONSAP, etc.)
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The stress-strain curve and pertinent material properties for
the aluminum plate material are shown in Figure 1 for both isotropic
and kinematic hardening. Figures 2 and 3 show the finite element
meshes adopted by Yamada and in this investigation, respectively. Both
meshes employ the same nodal point coordinates for easy comparison of
solutions but different element shapes since Yamada's program considers
only triangular elements and the finite element code adopted in this
investigation utilizes quadrilateral elements. This resulted in an
apparent distortion of quadrilateral elements (Figure 3). Due to
symmetry, only the first quadrant of the plate was discretized. A
uniform tensile stress of 39.2 N/mmz, which was selected in the
Yamada solution, was applied in the y-direction along the upper edge
of the plate.

Comparisons of the nodal forces and displacements along the
horizontal and vertical axes of symmetry are shown in Figures 4 through
7. Results obtained from the two finite element codes are within 10
percent, with the differences caused primarily by the dissimilarity
of element shapes. Theoretically, the accuracy could be improved for
a given number of nodes by using quadrilateral elements, since the
increased degrees-of-freedom would permit a closer approximation to

the displacements within an element (22,23].

2.3.2 Comparison to Marcal and King's Analvsis

In the previous section, a coarse grid model was used to compare
two different solution techniques. 1In order to determine the extent

and character of the plastic region as a function of applied tensile

16
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stress, the model was reconstructed so that nodal densitv near

the stress concentration would be increased. Through this remesh-
ing, the number of nodes and elements and the maximum wavefronts were
increased to 399, 350 and 33 from 94, 70 and 15, respectively. This
improved model is shown in Figure 8. The material used for this
investigation was linear strain-hardening aluminum, with the following
mechanicai properties; Young's modulus 7000 kg/mmz, Poisson's ratio
0.2, Yield stress 24.3 kg/mmz, strain hardening rate 225 kg/mmz.

These values were obtained from Zienkievicz's [21] and Marcal and King's
[18] finite element analysis of a linear strain-hardening aluminum
perforated strip, whose diameter-width-height ratio was 1:2:3.6
instead of 1:3:5 of this investigation.

The plastic regions for load factors of 1.5, 2.0 and 2.5 are
shown ianigure 9. A load factor of 1.0 represents the load required
to cause incipience of yielding in the plate. Load factors of 1.5,
2.0 and 2.5 resulted in progressive yielding of the plate near the
circular penetration. Figure 10 shows the plastic regions obtained
by Marcal and King. Comparison of Figure 9 and 10 indicates that the
character and extent of the plastic regions are nearly identical

for both analyses in spite of the shape difference of the specimens.




Y {mm)

W R T e T T,

B A

50-0

30-0

AL R

10-0

0-0

KKK

0-0 10-0 200

Number of Nodes = 399

Mumber of Elements = 350

Figure 8.

Y T > X(mm)
30:0 40-0

Inproved Model used in the Investigation

of Plastic Regions.

WU T SP U P

s il M VY S i - NN

25

.....




2:5

pt

-5 2:0 25

Diameter:Width:Height = 1:3:5

Figure 9. Character and Extent of Plastic Pepgions
Obtained in this Investigation for
Selected Load Factors.

L A S S S - PP Gy Y iheadh b h — &




PE————————T— rp——— - —— - s are anacie aen amcneres e~ el s et Sk Seib S AL VIR IR E B R

" 27
§

TTITTITID

2-3

2-3

] 11416 2.0 2-3

Diameter:Width:Height = 1:2:3.6

Figure 10. Character and Zxtent of Plastic Regions
Obtained in !larcal and King's Analysis
for Selected Load Factors.




-:i' CHAPTER III

|
SOLUTION TECHNIQUES AND THE INDENTATION MODEL 1
|
|

3.1 Method of Approach

Since an analycical solution to the elastic/plastic problem
is not available at this time, the investigation of elastic/plastic
conical indentation was accomplished entirely by finite element
techniques. The objective was to develop and demonstrate numerical
techniques which can be applied to elastic/plastic problems
involving flow, fracture and residual stress effects beneath a
conical indenter. These techniques will be explained in greater
detail in subseqﬁent chapters.
;:f In the loading procedure, three separate stages were required
to simulate elastic/plastic loading and unloading of a half-space
by a rigid conical indenter. 1In the first stage, initial loading

was applied through nodal displacements selected to simulate

conical indentation at the contact-surface. Displacement loading
was used since there is no analytical method currently available
for predicting the load distribution for elastic/plastic conical

indentation. The second stage was designed to obtain the equivalent

surface nodal loads which would result in the same stress and displace-
ment fields as those obtained by the displacement loading of the first

stage. This was accomplished by using the numerical results obtained

v
@

following the displacement loading of the first stage. In the third

stage, the equivalent surface nodal loads were reduced to zero in order
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to simulate unloading of the specimen. During this stage, the re-
sidual displacement beneath the indenter and the residual stress
fields were generated.

The error norm for each stage in the analvsis was limited to

within 5 percent.

3.2 Finite Element Model and Grids

The axisymmetric finite element idealization for the indentation
analysis of the half-space is shown in Figures 11 through 14. Figure
11 shows the overall outline of the model and Figures 12, 13, and 14
are sub-grids which must be inserted into the appropriate central
sectors of Figures 11, 12, and 13, respectively, to construct the
entire model. There are 470 nodes and 427 elements, and the maximum
wavefront that governs CPU-time [22] is 15. Loading is applied in
the vertical direction along the y-axis, as shown in the figures. The
finite element mesh was designed to meet the following objectives:

1) to reduce the maximum wavefront in order to minimize

CPU-time and core storage requirements,

2) to reduce the occurrence of singularities for elements
in regions of primary interest by considering the shapes
of elements,

3) to reduce the number of elements in regions that are of
less interest by using curved boundarv elements which
include intermediate nodes at the edge of the elements,

4)  to limit the maximum output to 30,000 printed lines, which

is the maximum number of printed lines for JOB-category 5
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Figure 11. Axisymmetric Finite Element Model for
Indentation Analysis.
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for Indentation Analysis (Insert A of
Figure 11).
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of PSU-IBM 370, by controlling the total number of

elements,
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5) to generate or preprocess the input data easily.

3.3 Material Used in this Investigation

The material selected for this analysis was idealized soda-
lime glass. Soda-lime glass is a brittle material used in many
fracture mechanics experiments and its behavior is well established
for Vickers pyramidal indentation and spherical indentation. It is
known that soda-lime glass exhibits elastic/perfectly plastic behavior
when subjected to indentation loading. It was thus an appropriate
material for the nonlinear finite elem nt model. The stress-strain
curve for this elastic/perfectly plastic soda-lime glass is shown

in Figure 15 together with its pertinent material properties.
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CHAPTER IV

ELASTIC AND ELASTIC/PLASTIC CONICAL INDENTATION

4.1 Introduction

The finite element model for conical indentation of a half-
space was formulated so that it could be applied to both elastic and
elastic/plastic indentations. This required the method of loading to
be carefully considered. For the case of elastic indentation, the
pressure distribution, resultant forces and displacements directly
beneath the indenter can be obtained from a closed-form solution by
Sneddon, as shown in Appendix A. Each of these parameters can be
used as load input to the finite element program at appropriate
nodes beneath the indenter tovmodel elastic conical indentation.

As the material begins to yield, the pressure distribution, and
resultant forces beneath the indenter are completely unknown, while
the displacement field is partially specified. In the case of the
displacement field, nodal points on the contact surface must conform
to the profile of the indenter. For regions adjacent to the contact
surface, the displacement of surface nodes would be automatically
generated as output of the finite element code,

In order to generate a model which can apply to both elastic
and elastic/plastic conical indentations, it was decided to input
load through the displacements of surface nodes along the contact
surface. This would allow direct comparison of the finite element

results with those obtained from the closed-form solution for




3’ elastic indentation, and also afford partial specification of the
displacement field beneath the indenter for elastic/plastic indenta-

T tion.

4.2 Method of Analysis

The coordinate system adopted in the analysis, the geometrical
characteristics associated with the indenter geometry, and the dis-
placement loading are shown in Figure 16. 1In order to simulate
Vickers indentation, the included angle of the indenter was set to
a = 136 degrees.

An elastic finite element analysis was performed initially to
verify the finite element model. Here, the contact surface radius
was selected as b = 0.30 mm, resulting in a depth of indentation
Viax = (d+e) = 0.19 mm that was computed from the Sneddon solution.
The Sneddon solution also allowed specification of both vertical and
norizontal displacements of surface nodes within and adjacent to
the contact surface. In the finite element analysis, however, only
the vertical displacement of the nodes on the contact surface was
specified. .Horizontal displacement was computed as output in order
to allow a greater degree of freedom on and adjacent to the contact

surface.

Following the elastic finite element analysis, the elastic/plastic
finite element analysis w.s conducted. As described earlier, the dis-

placement field beneath the indenter is only partially described in

- this case. A trial elastic/plastic run was made, in which the

- initial vertical displacements of nodes within the contact surface
e

—




Figure 16. Conical Indentation Geometry Beneath
the Indenter.
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were obtained from the Sneddon solution for assumed elastic/perfectly
plastic behavior of soda—liﬁe glass. Following this step, nodal
force resultants were checked for the nodes adjacent to the contact
surface to determine whether any vertical tensile tractions existed.
This condition, when encountered, indicated a divergence of elastic/
plastic surface deformations from the elastic Sneddon displacements,
resulting in "overlap" of vertical surface displacements with the
indenter profile. This was alleviated through trial reductions of
the indentation depth that were repeated until the vertical tensile
tractions were reduced to zero or assumed small compressive values.
For soda-lime glass, it was found that closed-form computation of
vertical displacements on the contact surface resulted in no

tensile tractions for the selected contact surface radius and there-

fore applied for elastic/plastic indentation.

4.3 Results and Discussions

The elastic and elastic/plastic results expressed in terms of
surface stresses and stresses directly beneath the conical indenter
are shown in Figures 17 to 20. In these figures, elastic results
obtained from the closed-form Sneddon solution and the elastic
finite element analysis are compared to those obtained in the
elastic/plastic finite element analysis. In each case stresses
are non-dimensionalized with respect to the factor Etang = (eE/b),
while distances along the free surface of the half-space and beneath
the indenter are nondimensionalized with respect to the contact sur-

face radius, b.

39

B




T
1
\
;

AR AN o s o X(

oxx/EtanB

v S e W T W e W W, YT T Ty Ty e e e e o oy w W ey T e

05 _
4
00 Jo Xl 2%aaa 4 4 a_a-
2 A
N
2
-05 -4
A R
.4
-Ilo T
R
=1-5 | | T | T
0-0 1-0 2-0 3:-0

T s
KN . T RANA
. R Sttt

A0 20 o A s Ao S e ) 4
. a

Yw.
a.

x/b

o = Sneddon Analysis
x = Elastic Finite Element Analysis

4 = Elastic/Plastic Finite Element Analysis

Figure 17. VNon-dimensionalized Surface Stress o

along the x-axis.

xx/Etane



-v

,I‘:"

TTY
Y

iPaaruaniacies

L]

LA JE2 Bl )
SR

ozz/EtanB

41

-_—een e e e s wn s e e ew e A e wm e e

> _{o]

-0-25 —

-0:-50 4

-075 4 Q

-0 4 8

-1-25 4

-1-5 T T T
00 -0 3-0

x/b

Sneddon Analysis

Elastic Finite Element Analysis

Elastic/Plastic Finite Element Analysis

Figure 18. Non-dimensionalized Surface Stress ozz/EtanB

along the x-axis.

SR S S



T TR T -7 M R Tt T eT LTt EER - T B
o
= 42
N
- o x/Etans = o /Etans
N -1-0 -05 00 05
o 1 1 y
% °x OA&A |
3 A® |
b‘. - A ' I
a s 0-0
A o | 001 002 003
A | B
o | @
a (AN a
i h «
| o
i [ x T4}
20 - & 204 @ &
|
|
. y/b 1 | aa
b - !
2 I
a h | ‘
g !
S ‘
i 3-0 4 - - — - 30 T B
S ' l
g | s
o J | '
- <
be o = Sneddon Analysis
X = Elastic Finite Element Analysis
A = Elastic/Plastic Finite Element Analysis
&
=

Figure 19. Non-dimensionalized Subsurface Stress cxx/Etane
and o, /Etansg along the y-axis.

L-‘.L'.-' o TP RPN P LI PP | PN Saam s e e ol o ' PP S VY SLAE S S S G S G SNy SUN GO U WP S S




.‘ r.-vA-ﬁ-vv-w

TNy T eyl ™ DR A

RICE TSR O .
RO A T

m_i—‘_;—'f"‘

43
oyy/EtanB
-2-0 ~1-5 -1-0 -05 0-0
] ] 1 —J
X0 s 3 AA I
x A |
- © o I
xX A |
A |
-0 - » A !
» 4 I
) |
y/b - 00 |
s |
‘|
2-0 |
|
wm |
- |
» !
|
3-0 < Y
|
1 Y
-~ |
o = Sneddon Analysis
x = Elastic Finite Element Analysis
A = Elastic/Plastic Finite Element Analysis

Figure 20.

Non-dimensionalized Subsurface Stress
y/Etana along the y-axis.

Ty

P T G




DR ]

4 .
et ot
PR .

!

Y
!

—Y R RER
R AN

P ettt

. NP .
B . PR AN |

.

S Ln JCn A Ak 2l 4

i .
. O L

LN

Toe
.

o

- -

T
!

v

ot b e b B St gt Al S ' T LW W W W W W, bR A

i~

4.3.1 Elastic Conical Indentation

Considering initially the elastic conical indentation, it is
obvious that excellent agreement is obtained between elastic stresses
generated by the closed-form Sneddon solution and the elastic finite
element analysis both on the surface of the half-space and directly
beneath the conical indenter. Minor differences are found at the
edge of contact (x/b = 1.00). These differences are caused by the
inability of the finite element grid to actually express the high
stress gradient in this region. Alons the surface at the edge of
contact, both the Sneddon solution and the elastic finite element
analysis show a tensile peak in what will be cermed the horizontal
stress component, L Figure 17. This peak, also found in spherical
indentation, - is usually associated with ring cracking and subsequent
Hertzian cone cracking. This will be discussed further in a sub-
sequent section. Within the contact zone, this stress becomes
compressive, reaching a compressive maximum directly beneath the
indenter. Outside the contact area, this stress decreases from the
tensile peak to zero as distance increases from the contact surface.
The out-of-plane hoop stress, S along the surface is everywhere
compressive, with the peak compressive value being found directly
beneath the indenter, Figure 18. This stress also gradually decreases
to zero as distance from the origin increases.

Directly beneath the indenter, the horizontal stress, O ex®
Figure 19, changes from high compressive values at the surface to

small tensile values at approximately one contact radius from the
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surface. The highest tensile value is found at the point of y/b = 1.60.
Beyond this point, this stress gradually decreases to zero. Tensile
values of this stress result in median cracking, found beneath

pyramidal and conical indenters. The subject of median cracking will

be discussed in a subsequent section. The out-of-plane hoop stress,
9,5 is of course equal to the horizontal stress, S along this axis
of symmetry. The subsurface vertical stress component, 0__, shown in
Figure 20, is everywhere compressive; reaching a peak magnitude directly
beneath the indenter and rapidly decreasing to zero at increased
distance from the origin.

Figure 21 shows the pressure distribution, oyy’ within and ad-
jacent to the contact zonme. Within the contact zone (x/b < 1.00) the
classical pressure distribution expected beneath a conical indenter is
obtained from the elastic finite element analysis for the prescribed
displacement loading. As can be seen from the figure, this corresponds
very well to that obtained from the closed-form Sneddon solution for
elastic conical indentation. This verifies the displacement loading
condition assumed in this investigation, where only vertical dis-
placements of surface nodal points are specified. In addition, the
load resultant predicted from the Sneddon solution (Appendix A),

Fs = 3004N, compares well with that determined independently by
summation of the vertical nodal forces on the contact surface of
0 < x/b < 1.00, F; = 2943N. This factor further substantiates the

displacement method of load application.
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4.3.2 Elastic/Plastic Conical Indentation

In generating elastic/plastic stress states beneath the conical
indenter, the model was allowed to yield according to the Huber-
Mises yield criterion at nodal points beneath the indénter with sub-
sequent flow being governed by the Prandtl-Reuss flow rule. The
elastic/perfectly plastic stress-strain curve was assumed for soda-
lime glass. During each iteration loop, both the elastic and elastic/
plastic portions of the stiffness matrix were updated. As stated
earlier, the vertical nodal point displacement along the contact sur-
face was used as load input for an assumed contact radius of 0.30 mm.
The elastic Sneddon solution was used to predict vertical displacements,
thus raising an obvious question regarding the use of an elastic
solution for the prediction of elastic/plastic displacements beneath
the conical inderter.

The applicability of the elastic Sneddon solution for the pre-
diction of vertical displacements on the contact surface was judged
by observation of mesh deformation for the elastic/plastic case, and
the extent and character of the plastic region. The mesh deformation
for the elastic/plastic conical indentation is shown in Figure 22.
The corresponding extent and character of the plastically deformed
region and the stress trajectories beneath the indenter can be seen in
Figure 23. These figures indicate a continuity of surface deformation
both within and adjacent to the contact surface, and also plastic
region characteristics similar to those measured experimentally and

predicted analytically. The shape of the plastic zone obtained by
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the elastic/plastic finite element analysis is nearly hemispherical
and is centered directly beneath the indenter. 1Its radius c¢ is
approximately 0.35 mm, resulting in a ratio of c/b equal to 1.16.
This c/b ratio compares favorably with a value of 1.159 explicitly
obtained by Johnson [11] (APPENDIX B) as a function of material
properties, with the center of the plastic region at the undeformed
origin. These factors were therefore considered as substantiation
of the assumed displacement loading as obtained from the Sneddon
solution. Observation of Figure 23 illustrates the difference in the
principal stress trajectories of the elastic and plastic regions. In
the elastic region, the in-plane hoop stress is the maximum principal
stress, 03> whereas in the plastic region, the out-of-plane hoop stress
is mainly the maximum principal stress, Oq-

In figures 17 to 20, the elastic/plastic stress fields along
the surface of the half-space are compared with the elastic solutions
obtained from the finite element analysis and the Sneddon solution.
The horizontal stress, Ox? along the surface shows the characteristic
tensile peak at the elastic/plastic boundary as indicated in Figure 17.
Within the contact zone, this stress is again compressive, reaching a
compressive peak directly beneath the indenter. Outside the region
of contact, this stress rapidly approaches the value obtained in the
elastic analysis at the elastic/plastic boundary. This tensile
peak is usually associated with ring cracking, as suggested in the
previous section. The out-of-plane hoop stress, S along the sur-
face again is everywhere compressive, with the peak compression being

found directly beneath the indenter, as indicated in Figure 18.
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This stress does not rapidly approach elastic results with increasing
distance from the contact region as was seen in the case of the hori-
zontal stress, O x"

Directly beneath the indenter, the horizontal stress, T x? changes
from high compressive values near the surface to small tensile values
at the elastic/plastic boundary, as indicated in Figure 19. This
stress rapidly approaches levels obtained in the elastic analysis
near the elastic/plastic boundary. Tensile values of this stress
result in median cracking as suggested in the previous section. The
subsurface vertical stress component, Gvy’ is again everywhere com-
pressive; reaching a peak magnitude directly beneath the indenter.

It decreases to zero with increasing distance from the surface more
rapidly than the corresponding stress in the elastic analysis. This
is indicated in Figure 20.

In Figure 21, the elastic/plastic pressure distribution, o,

yy
within and adjacent to the contact zone i< compared with the elastic
solutions obtained from the finite element analysis and Sneddon
solution. It is obvious that high pressure exists within the

region of contact and that this pressure is, of course, suddenly
reduced beyond the contact surface. The elastic/plastic load
resultant generated from summation of the vertical nodal forces on
the contact surface of 0 < x < b 1is obtained as Fg = 2498N. This
is 15 to 17 percent lower than the elastic load resultants obtained
from the Sneddon solution and the elastic finite element analysis.

This lower load resultant value was expected, since less pressure

was needed to deform the yielded region.
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CHAPTER V

RESIDUAL SOLUTIONS FOR ELASTIC/PLASTIC CONICAL INDENTATION

5.1 Introduction’

In this chapter, residual stress, displacement and strain fields
resulting from the elastic/plastic conical indentation are generated.
Development of the residual solution required that a load-unload cycle
consisting of two separate loading stages (stage II and III) be formu-
lated. During the loading stage of the cycle (stage II), equivalent
nodal forces were applied as load input to surface nodes within the
contact area. These equivalent nodal loads were obtained from the nodal
force output obtained in stage I displacement loading and produce the
surface deformation and resultant stress, displacement and strain
distribution beneath the indenter. A procedure developed to convert the
nodal force output obtained in stage I to the equivalent nodal load is
discussed in greater detail in the following sections of this chapter.
In the unloading stage of the cycle (stage III), the equivalent nodal

loads were reduced to zero, resulting in the required residual solutioms.

5.2 Method of Analysis

The procedure used to obtain the equivaleat nodal loads in the
contact area from the nodal force output obtained in stage I is dis-
cussed in this section. These equivalent nod=l loads are, as mentioned

previously, used during the loading stage of the cycle (stage II).
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In order to improve stress and displacement fields beneath the

indenter for stage II loading, an iterative scheme was developed through

- which the output nodal forces from stage I loading were continually im-

y—y—w e
)

.
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proved by incrementing each nodal load magnitude until the error in re-
sultant displacement and stress fields and nodal force resultants be-
neath the indenter was less than 3 percent. With the error reduced to
Bl less than 3 percent, the nodal force loading was considered to be
equivalent to the nodal displacement loading. Figure 24 compares the
nodal forces resulting from the displacement loading to the equivalent
nodal loads obtained through the iterative scheme.

Following t .e equivalent nodal force loading in the loading phase

of the cycle, the equivalent nodal loads were reduced to zero yielding
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residual displacements, strains and stresses on the contact surface

and beneath the indentation.

Lol S5 8041
T

F 5.3 Results and Discussion

A geometric comparison of the indentation profile obtained in

the loading phase of the cycle and the residual surface crater remaining

YT
\.. N

after unloading is shown in Figure 25. From Figure 25, the ratio of

Dk Bl

R . . R .
residual crater depth to maximum indentation depth, Vmax/Vmax’ is

easily obtained as 0.41. This ratio can be compared to that analytically

predicted from the equation developed by Lawn and Howes [46] (APPENDIX
R
B, equation (B-8)). The analytical ratio obtained is vmax/vmax =0.70
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for a hardness of soda-lime glass of 5.6 GPa and the assumption

g s 'L where "E and Ty are elastic and plastic hysteresis geometrical

parameters, respectively (APPENDIX B, equation (B-9)). The disagreement
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between the finite element and analytical results mav be caused by the

. R .
\'D By using the value of vmax/vmax = 0.41 predicted

assumption Yg =
by the finite element solution and equation (B-8), a geometrical para-
meter ratio YE/YH of 1.26 is obtained resulting in a geometrical para-
meter for plastic hysteresis Yy of 1.25. This result is based on an

-: assumed elastic geometrical parameter Yg = n/2 defined by Sneddon [5,6].

[] It should be noted that there is a pile-up on the free surface

- adjacent to the contact radius, as shown in Figure 25, and this pile-up

is the result of elastic recovery of the surface elements adjacent to

ri the contact area, Figure 26.

- Non-dimensionalized horizontal and out-of-plane hoop residual

stresses along the indentation surface are shown in Figure 27.

Stresses are shown as a function of non~dimensionalized distance from
the center of indentation. Both the horizontal and out-of-plane hoop
stresses, oix and ogz, are tensile for the regions 0.5 < x/b < 1.5
and x/b> 0.6, respectively, with tensile peaks occurring at the
elastic/plastic boundary x/b * 1.3. These tensile residual stresses
may be responsible for the propagation of radial cracking during the
unloading phase of the cycle, a topic of discussion in a subsequent

chapter.

Non-dimensionalized residual stresses directly beneath the indenter

are shown in Figure 28. The horizontal and out-of-plane hoop stress,

R R R
as well as the cal stress component are
Txex and Tyz vertica P ’ oyy’

tensile for y/b > 1.5. Tensile values of the out-of-plane hoop residual

T

stress could result in median crack extension during the unloading

phase. The vertical residual tensile stresses could promote lateral
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crack propagation upon unloading. Both of these possibilities
will be explored in the following chapter.

The residual plastic zone and stress trajectories are shown in
Figure 29. Comparison with Figure 23 reveals that the size of the
plastic zone has increased approximately 20 percent during the un-~
loading phase due to elastic recovery in the plastic region. Of
major interest are the stress trajectories in the elastic region
where fracture can be extended during the unloading phase. 1In
this region the stress trajectories indicate the possible propagation
of the lateral cracking driven by the in-plane hoop stress, og,
from points near the elastic/plastic boundary. Near the surface,
the trajectories indicate that the out-of-plane hoop residual
stress, %ﬁ = o?, would result in the radial crack extension. For

subsurface regions, the trajectories indicate the possibility of

the median crack propagation by the out-of-plane hoop residual stress,
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CHAPTER VI

ANALYSIS OF FRACTURE MECHANISMS INDUCED BY INDENTATION

6.1 Introduction

] Analytical and experimental investigations considering the

:' mechanics of crack initiation and propagation beneath spherical,

e conical, Vickers pyramidal, and point indentations in a variety of

T materials have been the topic of many recent investigations [29-48].
1EE In this chapter, fracture mechanisms beneath conical indentation in

! soda-lime glass are further described by applying the numerical results
obtained in the preceding chapters to approximate fracture mechanics
theories. Conical indentation was chosen for analysis as it closely
simulates loading conditions found in a large variety of machining

processes.

6.2 Failure Modes beneath the Indenter

There are four major crack systers introduced as indentation
fracture mechanisms. These crack systems can be classified by the

cracks initiated and propagated near the surface and at subsurface
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locations. It has also been experimentally and analytically shown that

p

.

;7 these crack systems are initiated on or near the elastic/plastic boundary
;f with subsequent extension into the elastic region. The schematic

fi: diagram of these crack systems is showm in Figure 30.
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Figure 30. Schematic Diagram of Indenta-
tion Cracks.
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6.2.1 Crack Systems near the Surface

Near the surface, two major crack systems are usually found in

axisymmetric indentation. They are surface ring crack system which is
initiated in the loading phase of the cycle [35,36], and radial crack
system which is usually initiated and propagated during the unloading
phase of the cycle [33,35,36]. It is known that surface ring crack
system is often propagated as a Hertzian cone crack [31,35,37,40] in

the case of spherical indentation. In the case of Vickers pyramidal

-
1
.

indentation, radial crack system is often initiated in the loading phase
and propagated during the unloading phase of the cycle, since the edges

of pyramidal indenter create highly singular regions in the specimen

[33,36,41,42].

6.2.2 Subsurface Crack System

Two major subsurface crack systems are also found. They are me-
dian crack system, which is initiated and propagated during the load-
ing phase and further propagated during the unloading phase of the
cycle [33,35,36,38], and lateral crack system, which is usually ini-
tiated and propagated during the unloading phase of the cycle. It
is known that the shape of the median cracking is penny-like or half-
penny-like [33,34,36,38,39,43] beneath the indentation. Lateral crack

system is often initiated with the surface ring crack and propagated

as a Hertzian cone crack in the case of spherical indentation [31,35,
37,40] as described in the last section. In the case of Vickers pyra-
midal indentation, lateral crack system is initiated on the elastic/

plastic boundary and propagated to the surface [33,35,37,38.41].
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6.3 Fracture Initiation and Propagation

In the discussion of fracture initiation and propagation during
elastic/plastic conical indentation, only the opening mode (KI—mode)
was considered. To correlate the stresses numerically obtained by
the finite element method with opening mode fracture, the tensile
peak stresses at the surface and at subsurface locations must be

considered, especially near the elastic/plastic boundary.

6.3.1 Identification of the Tensile Peak Stresses

The necessary tensile stress fields and tensile stress trajectories
for loading and unloading of a conical indenter were numerically
determined in the preceding chapters. By observation of Figures 17
and 27, the maximum surface tensile stresses are found at the elastic/
plastic boundary. 1In the loading phase, the maximum value of the
horizontal surface stress, 0 e’ corresponding to surface ring
cracking, is obtained as 2.2 GPa. During the unloading phase, the
maximum values of the horizontal surface residual stress, oR ,
corresponding to the surface ring cracking, and the surface out-of-
plane residual hoop stress, oiz, corresponding to radial cracking,
are obtained as 1.6 GPa and 1.8 GPa, respectively. By observation of
Figures 19 and 28, the maximum subsurface tensile stresses along
the y-axis are also found at the elastic/plastic boundary. In the
loading phase, the maximum value of the subsurface horizontal stress,
Texc? which is equal to the subsurface out-of-plane hoop stress, Tppt

corresponding co the median cracking, is obcained as 0.48 GPa. During

the unloading phase of the cycle, the maximum values of the subsurface
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X , R R ,
horizontal residual stress, Gxx = Ozz’ corresponding to the median
cracking, and the subsurface vertical residual stress, 05 , corres-
ponding to the laterial cracking, are obtained as 0.42 GPa and 0.24 GPa,

respectively. Those tensile peak stresses are shown in Table 1 with

the corresponding crack systems which they initiate.

6.3.2 Critical Flaw Size

The peak tensile stresses obtained in the previous section can
be combined with an appropriate fracture mechanics theory to predict
fracture initiation and propagation beneath the indenter. Crack

initiation is here predicted by the Griffith flaw hypothesis [29,30]:

o i(ZEF/wcf)% , (6.1)

where o is the critical stress causing stable fracture, E is Young's
modulus, T is the crack surface energy and ce is the flaw size. By
solving equation (6.1) for Ces the following expression is obtained

for the critical flaw size corresponding to the tensile peak stress:
2
cg > (2ET/me”). (6.2)

On the surface, the critical flaw sizes corresponding to the
horizontal tensile peak stress, 2.2 GPa, and the horizontal residual
peak stress, 1.6 GPa, are obtained from equation (6.2) as 0.025 um
and 0,048 ym, respectively. These critical flaw sizes will result in
initiation and propagation of the surface ring cracking. Also on the

surface, the critical flaw size corresponding to the out-of-plane hoop

residual tensile peak stress, 1.8 GPa, can be calculated as 0.039 um

which will result in initiation and propagation of the median cracking.
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At subsurface locations along the y-axis, the critical flaw sizes
corresponding to the horizontal or out-of-plane hoop tensile peak stress,
0.48 GPa, and the horizontal or out-of-plane hoop residual tensile peak
stress, 0.42 GPa, are obtained from equation (6.2) as 0.54 um and 0.7 um,
respectively. These critical flaw sizes will result in initiation and
propagation of median crack system. Also at subsurface locations along
the y-axis, the critical flaw size corresponding to the vertical residual
tensile peak stress, 0.24 GPa, can be obtained as 2.17 um, which will
result in initiation and propagation of lateral crack system.

The cvitical flaw sizes have been discussed in recent papers.

Lawn and Evans [36] have given the critical condition for the initiation

of subsurface flaws as:

cp = 44.2 (KIC/H)2 i (6.3)

Hagan [43,44) has developed a similar expression for the largest flaw
size which could be nucleated by the intersecting flow lines beneath

the indenter:
c. = 2.95 (K../H)2 (6.4)
£ * IC *

In these equations, KIC and H are the critical stress intensity factor
and hardness, respectively. For values of KIC = 0.7 MNm-B/2 and

H = 5.6 GPa for soda-lime glass, equations (6.3) and (6.4) predicted
critical flaw sizes of 0.7 um and 0.46 um, respectively. The void size
for soda-lime glass has been experimentally measured by Hagan [44]

as 0.6 um. These flaw sizes were correlated to the median cracking.

Swain and Hagan [35] and Chiang, Marshall and Evans [47] correlated

.
e
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-l

‘ the crack systems and the threshold flaw sizes, The thresheld flaw
sizes for median and radial crack systems were estimated as 1.0 um

and that for lateral crack system was estimated as 3.0 um. All of those
!I critical flaw sizes are compared in Table 2. The critical flaw size
obtained by the finite element analysis with the Griffith energy
hypothesis agrees very well with experimental and analytical values

for median crack system. However the critical flaw sizes obtained by

Swain et al. and Chiang et al. are clearly overestimated as compared

L |
v
O
l.‘_
y

,
o
L

with other analytical, experimental and numerical values for crack

initiation.

6.3.3 Fracture Initiation and Propagation Zones

As described previously, the critical flaw sizes required for
the initiation and propagation of the various crack systems are
obtained from the Griffith energy hypothesis with the stresses generated
by the finite element method. It was, then, found that the critical
flaw sizes predicted by Swain et al. and Chian et al. were overesti-
mated when compared with the critical flaw sizes obtained in this

investigation.

However, by use of these overestimated flaw sizes, the critical

stresses can be generéted by equation (6.1) to predict probable

{

E: crack initiation and propagation zones. The values of the critical
Ei | stress corresponding to initiation and propagation of the median and
Ei . radial crack systems is obtained as 0.35 GPa from equation (6.1) with
;? the value of ce = 1.0 um. Also the value of the critical stress

E; corresponding to lateral crack svstem can be obtained as 0.2 GPa from
{
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equation (6.1) with the value of cg = 3.0 um. These two critical
stress values can be compared with the stresses generated by the
finite element analysis. In Figure 31, the assumed crack initiation
and propagation zones corresponding to ¢ > 0.35 GPa in the loading
phase are plotted. Those can be thought of as the assumed surface

ring crack zone and the assumed median crack zone. In Figure 32,

the assumed crack initiation and propagation zones corresponding

71

to ¢ >0.35 GPa and o > 0.2 GPa during the unloading phase of the cycle

are plotted. Those can be thought of as the potential median crack,

radial crack and lateral crack zones.
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Figure 31. Crack Initiation and Propagation Zones
in the Loading Phase
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Figure 32. Crack Initiation and Propagation Zones during
the Unloading Phase.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The following conclusions were reached in this investigation:

1. The el;stic/plastic finite element code used in this investi-
gation was verified by comparing nodal displacements, forces
and plastic zone extension obtained for selected plane-
stress problems, the plates with a circular penetration, with
results numerically obtained by Yamada [Personal Note] and

Marcal and King [18] in independent investigations.

2. The solution technique was further verified by comparison
of elastic displacements, strains and stresses generated
for conical indentation of an elastic half-space to the

closed-form results obtained from the Sneddon solution.

3. The elastic/perfectly plastic finite element model developed
for conical indentation of a half-space was successfully
utilized to determine the size and characteristics of the
plastic zone beneath the indenter during a loading-unloading
cycle. The size of the plastic zone was shown to agree
well with results obtained analytically by Johnson [1l].

The shape of the plastic zone was shown to be hemispherical

which conformed to results obtained in previous experimental
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and analytical investigations. The origin of the hemis-
pherical plastic zone was found to be on the deformed
surface directly beneath the indenter, not on the undeformed

surface.

The displacement, strain and stress fields were successfully
generated by the elastic/plastic finite element model for a
loading-unloading cycle. Resulting loading and residual
stress fields were examined to determine the location and
magnitude of tensile peak stresses which would result in

the initiation and subsequent propagation of the ring, radial,
median and lateral crack systems. Tensile peak stresses

were characteristically found on the elastic/plastic boundary
near the surface and at subsurface locations directiy
beneath the indentation. The out-of-plane hoop stress, which
controlled both radial and median cracking, was found to
change sign near the surface from compression during the
loading phase to tension during the unloading phase of the
cycle. This indicates that radial crack propagation

and the additional median crack propagation takes place

during the unloading phase, a fact experimentally verified.

By use of the Griffith energy hypothesis with the generated
tensile peak stresses, the critical flaw sizes, resulting in
initiation of the crack systems, were obtained. The critical

flaw sizes obtained in this investigation agreed well with
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critical flaw sizes predicted analytically and experimentally
by Lawn et al. [36], Hagan [43,44], Swain et al. [33] and

Chiang et al. [47]) for each crack system.

Fracture initiation and propagation zones for the loading
phase and unloading phase of the cycle were generated through
comparison of the tensile peak stresses obtained in this
investigation to critical stresses obtained from the Griffith
energy hypothesis and maximum allowable flaw sizes. These
fracture initiation and propagation zones agreed well with
actual initiation and propagation zones experimentally

observed.

7.2 Recommendations

The following subjects are recommended as topics for further

research:

1.

The elastic/plastic finite element model should be expanded
to consider elastic/plastic strain hardening in order to

analyze more realistic indentation models.

Investigation should be expanded to consider more brittle,
lower yield strength/Young's modulus ratioc models such as‘
Mg0 and ZnS in order to determine the effect of these para-
meters on the extent and character of the plastic zone and

resultant crack systems,

Shear peaks as well as tensile peaks should be investigated
as they affect fracture initiation through dislocation

activity and crack propagation by Mode II loading.
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4, The elastic/plastic finite element model should be expanded

.
L

to consider non-axisymmetric indentation such as Vickers
pyramidal indentation and obtain characteristics of the

singularities created by the edges of the indenter.

ﬁﬁ. 5. The elastic/plastic finite element technique should be
p

i" combined with statistical analysis, such ws "The Monte
Carlo method) in order to closely model elastic/plastic

indentation fracture.
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APPENDIX A

THE ELASTIC STREAS FIELDS FOR POINT, SPHERICAL AND CONICAL INDENTATION

1. Point Indentation (Boussinesque and Michell Solution)
The well known non-dimensionalized stress field equations for
the point indentation problem [2] are given for the coordinate

system shown in Figure 33 as:

r___ 1 g
5T T 20%D {- (3A + 4u)cosd + u}
o}
- [ S 2 28
o G cos 9 sec 2
% 2 2 9 * (A-1)
. Z?X::Y (cosf - sin“8) sec T
Erj = H sinf cos#® sec2 S
p' 4 () 2’
J
Tr¢ = T9¢ = 0,
where
y = — E
(1+v) (1-2v) °?
- B
¢ 2(1+v)
F
[ - ——
P 2
Tr

F = applied load
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Point Indentation Geometry.
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2. Spherical Indentation (Hertz and Huber Solution)

The non-dimensionalized Hertzian stress field which was extended
to a general three-dilensional form by Huber [4] is expressed by four
sets of equations depending on the coordinates of the point in the
half-space, Figure 34.

. For points along the y~axis directly beneath the indenter

(R=0(x=0, z=0)):

Gx Gz y a 1 a2
= = 2 = - + - 23, _ =
> > 1.5{1+y)[1 - arctan ] > a2+y2 },
°lg=0  %'r=0
o al |
%) L3 =53 (a-2
P, a+ty )
=0
T ‘ = T 2 = sz =0.
¥¥ig=0 ¥%ir=0 R=0 J

For points on the surface of the half-space beneath the contact sur-

face of the indenter (y=0, R < a):

a 2 = 3 >
3 _ 1=2v a~ (1 - (l /az—RZ) ] - 1.5 /aZ_RZ ,
P 2 2 a a
o R
y=0
S Ll fasR
p a
o y=0
4
g 2 3 (A-3)
= e N R D I R
p 2 2 a a
o R
y=0
R I P
- z=0 y=0 y=0
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and
F = 8Ea ;
3D(1-v°)
2
- 2a
f = 5 2h.
3. Conical Indentation (Sneddon Solution)
The coordinate system for Sneddon's analysis is given in Figure
35. Before defining expressions for the stress distributions in
the half-space, the displacement functions, mean pressure and pressure
distribution at the surface of the half-gpace will be defined. The
Eﬂ vertical displacement at the surface of the half-space is assumed as:
- (v, ] = d+ e(l-p) ,
u 6)) y=0
[
30 where p =x/b, (A-6)
; d = E(%"-l),
while the horizontal displacement on the surface is given by:
[ 1 1 - /1o~ l \
-2v p _1-vl-o
Ta-y) ©° in = p2 J (p<1) |,
[u(p)] = 1 P
j | ,
1-2v e
- - > 1 A-7

The resultant force F, the mean pressure pm and the pressure distribu-

tion P(o) on the surface are expressed as:

it oun i mt s a. =
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Figure 35.

Conical Indentation Geometry
beneath the Indenter.
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2
F =

mbeE Emb
2 = ) tang ,
2(1=-v") 2{1-v°)

p = F__ Etang
n 1rb2 2(1—v2) ' (a-8)

- 1
p(p) = Py arcosh (p) ,

The non-dimensionalized stresses within the half space are given by:

%

X __ 0 _12v.1 .1 _ 0

b Ky - =Ky + 2K - K,

o

¥ _ 0 0

P (R +¢K,) ,

o

z 0,1-2v .1 .1

£ = 2K, + =22 -2K7), -
o (2vKy 5 5 % (A-9)

1
_ﬂ“CKl ’
P 2

but when x =0 (p = 0):

. O, 0 o
-—-8—--(14—\))1(1-—2—1,
Pn Pp L™
where
0.1, Q% + 20t cos(3-3) + t°
1 2 2 ’

(c + ot + 2%
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1 _ cosz
Y Q
/pz + ;2

N O

i [ Vo2 + ¢% - Q cos 31,

W
I

Kl -2 [£ cos (y-¢) - - — 1 .

2 0 Q 2. 2
oo + g

1_1,..0 1 _ 1 . -~ =

Ko =3 [OKI Ky 5 (1-Q sing)] ,

and

=X =X =

L=y P =% e =Db tang ,

2
t° = H®, Q = (p2 + cz—l) + 4c2 ,

arctan {_ZZC_Z__ } .
(p"+5°-1)

=

E = agrectan (%) . 3 =

4, Comparison of the three elastic indentation stress fields.

To compare the three elastic stress fields which are given in the
preceding sections of APPENDIX A for the same condition, Young's
modulus E, Poisson's ratio v, and the resultant force F must be fixed.
For the finite element analysis of conical indentation, the following
four values were defined:

E = 49000 N/mm? v =0.22

Contact radius b = 0.3 mm cone angle a = 136° (B8 = 22°)
From these four values the resultant force F can be obtained from

equation (A-8):

o1




gy - B b A S J - A S A Y
CEee Jvan ZUB S aven meint dvin St s 2o Ziue SO e i e Shoe S Thandeic et Inchbes JRon i jSe SRl A R B A SIS S R

86

2
F = Erb

= 3 tanB = 2941.
2(1-v5)

(N)
If we equate the contact radius a for Huber's with b for Sneddon's

then the spherical diameter of Huber solution can be defined as:

8Ea

D—
2y

= = 14.00 (mm) .
3F(1-v
Huber's stress fields and Sneddon's stress fields were non-dimensionalied
by the factor naZ/F = wbz/F; however, Michell's stress field was non-
dimensionalized by the factor an/F (r is variable). To compare Michell's
stress field with.other two stress fields results for the Michell solu-
tion (A-1) are multiplied by p' = F/wr2 and divided by pp=pm=F/ﬂa2=F/ﬂb2.
The comparison of the three elastic non-dimensionalized stress fields in
terms of the angle 6 are plotted in Figures 36 through 39 for the
coordinates:
x2 + y2 = a2 = r2 and z = 0,

where X = rsind s y = rcosf .

To see the effect of the cone angle a in Sneddon solution, the
cone angle a and the contact radius b are assumed as variables while
E, v, F, a and D are remained as constants. The relationship between
a,B8, b are shown in Table 3. With the constant non-dimensionalized

factor llpo, the change of Sneddon's stress field in terms of the angle 9

are plotted in Figures 40 through 43 under the condition:

o ) 202 S araon e 4
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0.40

-0.40
S
=

15.0 45.0 75.0
0.0 30.0 60.0 90.0
Angle s(®
Michell Solution (Point Indentation)

Huber Solution (Spherical Indentatior)
S : Sneddon Solution (Conical Indentatior)

X

E‘ . Figure 35. Comparison of Elastic Point, Spherical and
- Conical Indentation Stress Fields (I):
~ llon-dimensionali zed Stress.axx.
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Relationship Letween &, B, and b
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By comparing these figures with Figures 36 to 39, it is obvious
that Sneddon's stress field behaves like Hertzian stress field under
the same contact radius and also Sneddon's stress field behaves like
Michell's stress field under the sharp included angle and small

contact radius as be expected.
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APPENDIX B

THE ANALYTICAL-EXPERIMENTAL EQUATIONS FOR ELASTIC/PLASTIC INDENTATION

Various formulas to define the indentation hardness, H, in terms
of Young's modulus, E, Poisson's ratio, v, and yield strength, Y,
have been developed by Johnson [1l], Perrott [37,39], and Izumitani [12].
These formulas were derived by utilizing Hill's elastic-plastic
solution of the expansion of a spherical or cylindrical cavity [7,8]
along with experimental observations.

Johnson's formula for a conical indentation is:

H 2 c

Y=3+22n (-b-) ’ (B-1)
with

E c\3

I tanf = 6(1—v)(g) - 4(1-2v) , (B-2)

and for a wedge indentation is:

[

~<|m
[ ]

T
Y[

+2m @1, (8-3)

with

2
% tang = (5-4v) (" - 301-2v) , (B-4)

where ¢ 1is the radius of the plastic zone and the center is the

undeformed origin.

Perrott's formula for conical and pyramidal indentation is:

% = 0.494 + 0.577 in —E“‘—“Z X (B-5)
Y (1-v%))
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Izumitani's formula for knoop indentation is:

-
S =

win

+2 %n (%) , (B-6)
with
c. 3 E

@ = 3Ty’

(B-7)
which are the same as Hill's equations for the expansion of a spherical
cavity in an infinite medium.

The relationship between indentation depth Vmax and residual crater

depth vR in terms of material properties and geometrical properties

for the conical indentation problem is expressed by Lawn and Howes

[46] as:

R 2 y. 2

RX | .- 2(1-\,2)(-}) cots| % , : (B-8)

max H
where H 1is the indentation hardness, and JE is the elastic
geometrical parameter which is expressed as:

Vmax 1
Yg -‘EEZEE [-'E 7 for Sneddons solution)} . (B-9)

and JH is actually an unknown geometrical parameter of plastic

hysteresis; however, it is usually defined as YH » Yge
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